Microfluidic alignment of collagen fibers for in vitro cell culture.

نویسندگان

  • Philip Lee
  • Rob Lin
  • James Moon
  • Luke P Lee
چکیده

Three dimensional gels of aligned collagen fibers were patterned in vitro using microfluidic channels. Collagen fiber orientation plays an important role in cell signaling for many tissues in vivo, but alignment has been difficult to realize in vitro. For microfluidic collagen fiber alignment, collagen solution was allowed to polymerize inside polydimethyl siloxane (PDMS) channels ranging from 10-400 microm in width. Collagen fiber orientation increased with smaller channel width, averaging 12+/-6 degrees from parallel for channels between 10 and 100 microm in width. In these channels 20-40% of the fibers were within 5 degrees of the channel axis. Bovine aortic endothelial cells expressing GFP-tubulin were cultured on aligned collagen substrate and found to stretch in the direction of the fibers. The use of artificially aligned collagen gels could be applied to the study of cell movement, signaling, growth, and differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices.

Interest in constructing a reliable 3-dimensional (3D) collagen culture platform in microfabricated systems is increasing as researchers strive to investigate reciprocal interaction between extracellular matrix (ECM) and cells under various conditions. However, in comparison to conventional 2-dimensional (2D) cell culture research, relatively little work has been reported about the polymerizati...

متن کامل

Histochemical and Immunohistochemical Analysis of Collagen Fibers and Microvascular Density in Various Grades of Oral Submucous Fibrosis

Background and Objective: This study was aimed to evaluate the collagen fibers qualitatively and its correlation with microvascular density in various grades of oral submucous fibrosis (OSMF).   Material and Methods: The present study comprised of total 40 cases of oral submucous fibrosis. Picrosirius red staining was done on all the specimens’ sections. ...

متن کامل

طراحی و ساخت سیستم میکروفلوییدی و ارزیابی قابلیت آن جهت تولید اینترلوکین 2 توسط سلول های جورکت

Background and purpose: Microfluidic systems are microstructures that could be used to improve the conventional cell culture protocols used in laboratories. The aim of this research was to design and construct the microfluidic system and evaluating its ability to produce IL-2 by jurkat cells. Material and methods: At first, the sketch of microfluidic canals was designed by Corel draw and wa...

متن کامل

Effects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells

In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...

متن کامل

The effects of prestrain and collagen fibril alignment on in vitro mineralization of self-assembled collagen fibers.

Collagen fibers are under tension in most extracellular matrices both prior to and during normal loading. This tension not only provides mechanical advantages, but also appears to establish a loading basis for the stimulation of mechanochemical transduction processes. The presence of tensile loads applied to collagen fibers also results in physical alignment of the collagen fibrils along the te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical microdevices

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2006